Jaraktitik E ke B adalah. A. 1,5 B. 6 C. 8 D. 10. Pembahasan Misalkan EB dinamakan x, maka AB nantinya akan sama dengan (2 + x). Perbandingan sisi EB dengan ED pada segitiga kecil (segitiga BDE), harus sama dengan perbandingan AB dengan AC pada segitiga besar (segitiga BCA). Selanjutnya: Jadi panjang EB adalah 6 cm. Soal No. 10
Jikadiketahui segitiga ABC, dengan ukuran panjang sisi dan sudut- sudutnya sebagai berikut. a. b = 20, ∠C = 105 o , dan ∠B = 45 o . Hitung panjang sisi a dan c. b. c = 20, ∠A = 35 o , dan ∠B = 40 o . Pengemudi harus mulai dari titik A, dan bergerak ke arah barat daya dengan membentuk sudut 52 o ke titik B, kemudian bergerak ke arah
Rumusdi atas itulah yang sering dikenal debagai dalil Stewart. Contoh Soal 2: Jika AB = 10 cm, CB = 12 cm, AC = 6 cm, dan DB = 7 cm, maka berapakah panjang CD?
45Diketahui segitiga ABC dengan koordinat titik A2 6 2 B4 5 2 dan C3 3 2 Besar from ASIA 193B at San Jose State University. Study Resources. Main Menu; by School; by Literature Title; Vektor a dan vektor b membentuk sudut α. Diketahui a = 6, b = 15, dan cosα = 0,7, maka nilai a.(a + b) sama dengan A. 49 B. 89 C. 99 D. 109 E. 115
AturanSinus dan Aturan Cosinus merupakan dua aturan yang menghubungkan panjang sisi dan besar sudut dalam segitiga sembarang dengan menggunakan konsep trigonometri. Sesuai dengan namanya, Aturan Sinus melibatkan fungsi sinus, sama halnya dengan Aturan Cosinus.
Hubungkantitik A dan C, maka terlihatlah ∆ABC dengan AB = 8 cm , BC = 7 cm dan AC = 5 cm B. MELUKIS SEGITIGA JIKA DIKETAHUI DUA SUDUT DAN SATU SISI APITNYA Contoh: Lukislah ∆ABC dengan AB = 8
R7GnxMB. Jawaban yang benar untuk pertanyaan tersebut adalah , , dan . Untuk menentukan besar sudut dengan menggunakan vektor, ingat rumus-rumus berikut. Jika diketahui titik dan , maka Pada soal ditanyakan besar sudut-sudut dalam segitiga jika diketahui titik sudut , dan . Berarti ditanyakan sudut , sudut , dan sudut . 1. Besar sudut . Sudut terbentuk dari vektor dan vektor . Menentukan vektor dan vektor . Menentukan besar sudut Jadi, besar sudut . 2. Besar sudut . Sudut terbentuk dari vektor dan vektor . Menentukan vektor dan vektor . Menentukan besar sudut . Jadi, besar sudut . 3. Besar sudut . Sudut terbentuk dari vektor dan vektor . Menentukan vektor dan vektor . Menentukan besar sudut . Jadi besar sudut . Dengan demikian, besar sudut-sudut segitiga seperti tersebut diatas.
MatematikaGEOMETRI Kelas 8 SMPKOORDINAT CARTESIUSPosisi Objek Pada BidangDiketahui segitiga ABC dengan koordinat titik A-1,2, B-4,-3, dan C2, 0. Jika berdasarkan titik acuan Px, y, koordinat A menjadi -3, 5. Koordinat titik B dan titik C terhadap titik P berturut-turut adalah .... a. 6,0 dan 0,-3 b. 4,0 dan 0, 3 c. -3,0 dan 0, 6 d. -6, 0} dan 0, 3Posisi Objek Pada BidangKOORDINAT CARTESIUSGEOMETRIMatematikaRekomendasi video solusi lainnya0127Diketahui K2,0, L4,-4, M6,0. Tentukan nilai N, sehi...0052Bayangan koordinat titik -5, 9 jika dicerminkan terhada...0203Diketahui dalam koordinat Kartesius terdapat titik P, Q, ...Teks videoDi sore ini diketahui segitiga ABC dengan koordinat titik A min 1,2 Benjamin 4 koma min 3 dan C nya 2,0 jika berdasarkan titik acuan itu x koma y koordinat A menjadi Min 3,5 maka koordinat titik B dan titik c terhadap titik p itu titik acuan berturut-turut adalah nah disini kita cari terlebih dahulu titik acuan b nya ya Nah disini kita bisa gunakan rumus ini untuk mencari titik koordinat terhadap titik acuan yaitu XP dikurang X Amin X acuan yaitu X baru di = X awal dikurang X acuannya Kemudian untuk titik y y baru = Y awal dikurangi acuan jadi X baru-baru ini adalah titik koordinat terhadap titik acuannya. Nah di sini berarti kita cari terlebih dahulu X acuan dan Ji acuantitik Ayah di mana yang awalnya titik A min 1,2 dan c x dan y a nya kemudian menjadi Min 3,5 berarti X dan y b nya Nah maka untuk X Y titik X Y X barunya untuk titik itu min 3 dan 3 = x awalnya yaitu minus 1 dikurang X acuannya kan kita cari maka X acuan itu = minus 1 ditambah 3 maka X acuannya itu = 2 Kemudian untuk yang ye ye baru sampai dengan awal dikurangi acuan y baru nya adalah 5 berarti 5 = y adalah 2 per 32 dikurang Y acuanMaka y acuan itu = 2 dikurang 5 maka y acuannya = 2 dikurang 5 yaitu minus 3. Nah, sehingga disini kita dapat untuk titik acuan atau titik p ya titik acuan P = 2 koma minus 3. Nah, kemudian kita cari titik koordinat B dan titik koordinat C terhadap titik acuannya Nah untuk yang titik B berarti untuk X baru ya kita cari X baru dan Y barunya maka untuk X baru itu sama dengan x awal-awalnya adalah Benjamin MP4 ya Min 4 dikurang dengan x acuannya adalah 2maka = Min 4 dikurang dua yaitu minus 6 Kemudian untuk ye ye baru itu sama dengan awal-awalnya adalah b nya minus 3 dikurang acuannya minus 3 maka = min 3 + 3 yaitu 0 Kemudian untuk yang titik c. Nah di sini berarti titik B ini kita dapat 6,0 lalu untuk kunci titik c yaitu untuk X barunya itu sama dengan nah yang awal dikurang acuan awalnya adalah 2 dikurang acuannya 2 maka = 0 eh 2 dikurang 20 Kemudian untuk yg baru itu sama dengan y awal berarti awalnya adalah 0 dikurang dengan y acuan yaitu acuannya adalah minus 3 minus 3 maka = 3 sehingga kita dapat titik koordinat c-nya adalah 0,3 sehingga untuk koordinat titik B dan titik c berturut-turut adalah 6,0 dan 0,3 yaitu yang D oke sekian sampai jumpa di pembahasan selanjutnya
MatematikaGEOMETRI Kelas 11 SMATransformasiDilatasi PerkalianDiketahui segitiga ABC dengan titik sudut A-1,1,B-3,1, dan C-1,4. Jika segitiga tersebut didilatasikan dengan [O, -1], maka segitiga bayangan adalah segitiga A'B'C' dengan ....Dilatasi PerkalianTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0232Tentukan bayangan dari persegi ABCD dengan titik sudut A...0242Bayangan titik P5, 4 jika didilatasi terhadap pusat -2...0252Hasil dilatasi terhadap titik B-1, 3 dengan pusat O0, ...0239Segitiga KLM dengan K6,4,L-3,1 , M2, -2 didilatasi ...Teks videoBerikut merupakan soal dari transformasi geometri Mari kita lihat soalnya diketahui terdapat segitiga ABC mempunyai titik sudut a b dan c. Misalkan ada segitiga A B dan C mempunyai koordinat masing-masing di koordinat kartesius berarti kalau misalkan diberikan garis seperti ini x y jika segitiga tersebut didilatasikan dengan pusat nya ini Oh ini maksudnya adalah dengan pusatnya 0,0 berarti disini koma minus 1 minus 1 artinya adalah nilai dilatasi Nya maka segitiga bayangan adalah segitiga a aksen B aksen C aksen dengan titik-titik Sebelum kita mulai mengerjakan menggunakan rumus pertama-tama saya akan menjelaskan konsep nya jadi awalnya misalkan kita punya segitiga seperti ini ABC ketika kita dilatasikan maka kitaMemperbesar atau memperkecil atau bisa juga memperbaiki arahnya karena di sini minus Artinya kita akan memper balik arahnya misalkan di kuadran kartesius kan ini kuadran 1 kuadran 2 kuadran 3 dan 4. Nah, kalau awalnya di kuadran 1 karena dia dilatasinya min 1 maka nanti posisinya jadi dikuadran 3 akan seperti itu Nah untuk mengerjakannya kita akan menggunakan rumus matriks untuk dilatasi dengan nilai kayaknya itu pusatnya 0,0 jadi rumus dilatasi adalah x aksen y aksen = 0. Jika dikalikan x y Maksudnya seperti gimana sih jadi Kak ini adalah nilai dilatasinya berarti kalauSoal di sini nilainya adalah minus 1. Nah X aksen D aksen adalah bayangan dari titik yang sebenarnya Jadi kalau misalkan di sini kita punya titik D Min 1,1 koordinat ya maka X yaitu - 1 dengan 1 x aksen y aksennya adalah hasil bayangan dari dilatasi nya seperti itu sekarang Mari kita langsung kerjakan menggunakan rumus yang pertama kita punya titik a karena yang diminta adalah nilai bayangannya berarti a aksen = b. Maka rumusnya X aksen D aksen = kakaknya di sini ada minus 1 minus 10 minus 1 dikalikan koordinat dari adanya aksi itu di MIN 1 dan ini itu di 1 lalu kita kalikan untuk mendapatkan koordinatdari bayangan titik a min 1 x min 1 menjadi 10 dikali 1 jadi 0, maka 1 + 2 hasilnya 1 selanjutnya 0 - 10 - 1 dikali 1 menjadi minus 1, maka koordinat bayangan dari titik A adalah 1 - 1 yang B bayangan dari B kita gunakan rumus yang sama X aksen y aksen = k Min 100 - 1 dikalikan titik yang awalnya x + 3 dan Y 1 berarti minus 3 dan 1 Mari kita kalikan menggunakan matriks Aji minus 1 dikali minus 33 + 0 x 1 Maka hasilnya 3 + 0 yaitu 3 artinya yang bawahnya 0 x minus 3minus 1 dikali 1 menjadi minus 1, maka hasil dari titik bayangan dari b atau b aksen adalah 3 - 1 sekarang kita lakukan hal yang sama ke titik c titik c = x aksen D aksen = kita ulangi min 1 x 00 x min 1 dikali titik-titik jadinya di sini adalah x min 1 dan y nya di 4 maka kita masukkan - 1 dan 4 = min 1 x min 1 menjadi 1 lalu 0 dikali 4 menjadi 0 maka 1 + 0 menjadi 10 dikali minus no minus 1 dikali 4 jadi minus 4 maka bayangan dari titik c atau C aksen adalah 1 koma minus 4Maka bayangan dari titik A adalah 1 koma min 1 bayangan dari titik B atau b. Aksen 2 3 koma min 1 dan bayangan dari titik c atau C aksen 0 1 koma Min 4 maka jawabannya yang di scan dari sore ini sampai jumpa di tahun berikutnya
- Berikut ini 50 latihan soal latihan PAS UAS Matematika kelas 10 SMA semester 2, berikut dengan kunci jawaban. Contoh soal PAS, UAS Matematika Kelas 10 Semester 2 terdiri dari 50 soal pilihan ganda lengkap dengan kunci jawabannya. Semua soal PAS, UAS Matematika Kelas 10 Semester 2 ini, ditujukan kepada orang tua untuk memandu proses belajar anak menghadapi Penilaian Akhir Tahun PAT atau Ujian Kenaikan Kelas UKK. Pastikan siswa harus terlebih dahulu menjawab soal PAS, UAS Matematika Kelas 10 SMA/MA ini, sebelum menengok hasil kunci jawaban. Gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Contoh Soal PAS, UAS Matematika Kelas 10 Kurikulum 2013 1. Diketahui titik C dan D diwikili oleh c=10, 8, dan d=2, 4. Jika diketahui titik R terletak pada vector CD dengan perbandingan CR RD = 1 3. Tentukan titik R!A. 1, 3B. 2, 4C. 7, 7D. 8, 6E. 8, 7 Kunci Jawaban E 2. Sebuah vector yang panjangnya satu, biasa disebut dengan ..A. Vector satuanB. Vector nolC. Vector kolomD. Vector posisiE. Kolinear Kunci Jawaban A 3. Bentuk sederhana vector PQ+QB+BA+AC+AS adalah …A. PPB. AAC. PSD. PCE. QS Kunci Jawaban C 4. Susi suka basket, Nino suka badminton, dan Ali suka sepak bola. relasi yang mungkin dari ketiga anak tersebut adalah...A. macam-macam olah ragaB. bola kesukaan merekaC. olah raga kesukaan merekaD. makanan kesukaan merekaE. hobi mereka Kunci Jawaban C 5. Diketahui fungsi gx= x + 1 dan fx= x2 + x - 1. komposisi fungsi f0 g x = ...A. x2 + 3x + 3B. x2 + 3x + 2C. x2 - 3x + 1D. x2 + 3x - 1E. x2 + 3x + 1 Kunci Jawaban E 6. Suatu fungsi f R → R ditentukan oleh ƒ x = x2 + 2. Anggota dari daerah asal yang mempunyai peta 18 adalah...A. 5 dan -5B. 4 dan -4C. 3 dan -3D. 2 dan -2E. 1 dan -1 Kunci Jawaban B 7. Diketahui himpunan pasangan berurutan dari suatu relasi adalah {1, 3; 2, 3; 2, 4; 3, 1}. Himpunan daerah asalnya adalah...A. {1, 2}B. {1, 2, 3}C. {1, 2, 3, 4}D. {1, 3, 4}E. {3, 4} Kunci Jawaban B 8. Diketahui K = { 3, 4, 5} dan L = { 1, 2, 3, 4, 5, 6, 7}, himpunan pasangan berurutan yang menyatakan relasi " dua lebihnya dari" himpunan K ke himpunan L adalah...A. { 3, 5; 4, 6}B. { 3, 5; 4, 6; 5,7}C. { 3, 1; 4, 2; 5,3 }D. { 3, 2; 4, 2; 5, 2}E. { 3, 1; 3, 2; 3, 3} Kunci Jawaban B 9. Range dari pasangan terurut { 2, 1; 3, 5; 4, 2; 4, 4; 6, 4} adalah...A. {1, 2, 4, 5}B. {1, 2, 3, 4, 5}C. {1, 2, 3, 4, 5, 6}D. {1, 3, 5}E. {2, 4, 6} Kunci Jawaban A 10. Dari pernyataan- pernyataan berikutI. Siswa dengan tempat duduknyaII. Siswa dengan tanggal lahirnyaIII. Negara dengan lagu kebangsaannyaYang berkorespondensi satu-satu adalah...A. Hanya II dan IIIB. Hanya I, II dan IIIC. Hanya I dan IIID. Hanya I dan IIE. Hanya I Kunci Jawaban A 11. Di bawah ini adalah himpunan berpasangan1. 1, a; 2, b; 3, b2. 1, a; 1, b; 3, c3. 2, 4; 4, 8, 6, 124. 2, 4, 2, 8, 6, 12Yang merupakan pemetaan adalah...A. 2 dan 4B. 2 dan 3C. 1 dan 3D. 1 dan 2E. 1 dan 4 Kunci Jawaban C 12. Diketahui suatu fungsi dengan rumus fx = 15 – 2x. jika fa = 7 maka nilai a adalah …….A. 11B. 4C. 1D. 7E. -4 Kunci Jawaban B 13. Berapakah hasil dari 3 log 12 + 3 log 24 – 3 log 1/27…A. 1B. 3C. 4D. 2E. 6 Kunci Jawaban B 14. Apabila 3log2 = a, maka jika 3 log 12 akan memiliki nilai…A. a + 1B. 2a + 1C. 3a + 1D. 2a + 3E. a + 2 Kunci Jawaban B 15. Apabila garis y = bx – a digunakan untuk memotong garis y = ax2 + bx a – 2b pada titik 1,1 dan x0, y0, maka hasil dari x0 + y0 adalah….A. 2B. 0C. -2D. -4E. -6 Kunci Jawaban E 16. Rumus suatu fungsi dinyatakan dengan fx = 2x + 5. Jika fa = 7, nilai a adalah … .A. -1B. -2C. 1D. 2 E. 3 Kunci Jawaban C 17. Diketahui rumus fungsi fx = -1-x. Nilai f-2 adalah … .A. -3B. -2 C. -1D. 1E. 2 Kunci Jawaban D 18. Jika fx = 4x2 + 3x + 5, maka nilai f1/2 adalah ... .A. 5,5B. 6,5C. 7,5D. 8,5E. 9,5 Kunci Jawaban C 19. Jika fx = x2 + 2x – c, dan f3 = 9. Maka nilai c adalah ... .A. 6 B. 5C. -5D. -6E. -8 Kunci Jawaban A 20. 33. Diketahui PQR, jika p = 4 cm, q = 6 cm, dan ∠R=30o maka luas PQR adalah...A. 4 cm2B. 5 cm2C. 6 cm2D. 7 cm2E. 8 cm2 Kunci Jawaban B 21. Jika diketahui segitiga ABC dengan a = 10 cm, b = 12 cm, dan C = 1200 maka luas segitiga tersebut adalah...A. 60 cm2B. 30√3 cm2C. 40 cm2D. 40√3 cm2E. 30 cm2 Kunci Jawaban C sin 4x+sin2x /cos 4x +cos2x senilai dengan....A. tan 3xB. –tan 3xC. cos 3xD. cotan 3xE. – cotan 3x Kunci Jawaban B 23. Tiga buah kapal P,Q,R menebar jaring dan ketiganya membentuk sebuah segitiga. Jika jarak P ke Q 120 m, Q ke R adalah 100 m,dan ∠PQR adalah 120o. Maka luas daerah tangkapan yang terbentuk oleh ketiga kapal tersebut adalah... m2B. 3000√3 m2C. 3000√2 cm2D. 3000√3 cm2E. 3000 m2 Iklan untuk Anda Warga Yang Sakit Lutut dan Pinggul Wajib Membaca Ini!Advertisement byKunci Jawaban A 24. Grafik fungsi fx = sin 4x mempunyai periode...A. πB. 2πC. 3πD. π/2E. 1/3 π Kunci Jawaban B 25. Besar Amplitudo dari grafik y = 2 sin x dalam interval 0o ≤ x 360o adalah...A. 2B. 3C. 6D. –3E. –4 Kunci Jawaban D 26. Jika ƒx = 3x – 5 dan gx = 6 – x – x2, maka ƒx – gx = ....A. x2+ 4x – 11 B. x2 + 4x + 11C. –x2 – 4x – 11D. x2 – 5x + 10E. x2 + 5x – 10 Kunci Jawaban A 27. Jika fx = 2x-1/3x+4 , x≠-4/3, maka f -1 x adalah...A. 4X-1/3X+2 , x ≠-2/3B. 4X-1/3X-2, x ≠2/3C. 4X+1/2-3X , x ≠2/3D. -4X-1/3X -_2 , x ≠2/3E. 4X+1/3X+2 , x ≠2/3 Kunci Jawaban A 28. Diketahui fungsi f A → R dengan fx = x2 + 2x – 3. Jika daerah asal A = {x – 4 ≤ x ≤ 3}, maka daerah hasil fungsi f adalah….A. {y 0 ≤ y ≤ 12}B. {y 5 ≤ y ≤ 12}C. {y – 4 ≤ y ≤ 12}D. {y – 4 ≤ y ≤ 5}E. {y y ≤ 12} Kunci Jawaban C 29. Jika diketahui fungsi fx = x – 11, maka berapakah nilai fx2 – 3fx – fx2?A. 19x – 19x – -25x – -25x + -3x + 11. Kunci Jawaban A 30. Pada segitiga PQR, diketahui panjang sisi PQ = 12 cm, QR = 10 cm, dan besar ∠Q = 30°. Luas segitiga PQR adalah … 30√ 30√ 60. Kunci Jawaban A 31. Diketahui suatu fungsi hx = fx . gx. Jika nilai fx = x + 6 dan gx = 2x – 1, maka berapakah nilai hx?A. 2x2 + 12x – 2x2 + 12x + 2x2 + 11x – 2x2 + 11x + 2x2 – 11x + 6. Kunci Jawaban C 32. Himpunan penyelesaian dari pertidaksamaan x^2-2x-8>0 adalah....A. {x│x4,x ∈R}B. {x│x-4,x ∈R}C. {x│x>-2 atau x>4,x ∈R}D. {x│x≤-2 atau x≥4,x ∈R}E. {x│x≤-2 atau x>4,x ∈R} Kunci Jawaban E 33. Himpunan penyelesaian dari √x-1>√3-xadalah...A. {x│-2B. {x│ 2C. {x│-2≤x<3,x∈R}D. {x│ 2E. {x│-2 Kunci Jawaban A 34. Diketahui gx = 2x + 3 dan fx = x2 – 4x + 6, maka fogx = ….A. 2x2-8x + 12B. 2x2 – 8x + 15C. 4x2 + 4x + 3D. 4x2 + 4x + 15E. 4x2+ 4x + 27 Kunci Jawaban B 35. Nilai x dan y yang memenuhi sistem persamaan y = 2x – 3 dan 3x – 4y = 7 adalah.....A. x = -1 dan y = 2B. x = -1 dan y = -1C. x = 1 dan y = -1D. x = -1 dan y = -2E. x = -1 dan y = 1 Kunci Jawaban C 36. Dalam segitiga ABC, A, B, dan C merupakan sudut-sudutnya. Jika tan A = 3/4 dan tan B = 4/3, maka sin C =....A. -1B. 2C. 1D. 24/25E. - 24/25 Kunci Jawaban B 37. Diketahui segitiga ABC dengan panjang AB = 6 cm, BC = 5 cm dan AC = 4 cm. Nilai cos B adalah …A. 1/2B. 3/4C. 4/5D. 8/9E. 11/12 Kunci Jawaban C 38. Jika sin A = 12/13, maka cos 2 A = ....A -160/169B. 160/ 169C -119/169D. 25/169E. -25/169 Kunci Jawaban B 39. Dalam sebuah segitiga KLM, diketahui k = 4 cm, l = 3 cm, dan luasnya 6 cm2. Besar sudut apit sisi k dan l adalah...A. 1200B. 900C. 600D. 450E. 300 Kunci Jawaban C 40. Himpunan pasangan berurutan berikut yang merupakan fungsi adalah ... .A. {2,2,1,1,3,2} B. {2,2,2,1,2,3}C. {2,2,2,3,3,2}D. {3,2,3,3,4,3}E. {1,3,3,1,3,3} Kunci Jawaban A 41. Range dari himpunan pasangan berurutan {2, 1, 3, 5, 4, 2, 4, 4, 6, 4} adalah …A. {1, 2, 3, 5} B. {1, 2, 4, 5}C. {1, 2, 3, 4, 5}D. {1, 2, 3, 4, 5, 6}E. {1, 2, 3, 4, 5, 6} Kunci Jawaban B 42. Diketahui A = {2,3} dan B = {1,3,5}. Banyaknya anggota A x B adalah ... .A. 8 buah B. 6 buah C. 4 buah D. 3 buah .E. 2 buah Kunci Jawaban B 43. Ukuran sudut 2100 kalau dinyatakan dalam radian adalah....A. 7/12 π 7/6 π 4/12 π 6/7 π 12/7 π rad Kunci Jawaban D 44. Sudut rad., kalau dinyatakan dalam derajat adalah...A. 32,260B. 35,260C. 37,260D. 39,260E. 40,260 Kunci Jawaban B 45. 100 + 200 + π/6+ π/4+π/3 sama dengan ... A. 1350B. 1650C. 1800D. 2100E. 2750 Kunci Jawaban B 46. Sudut rad., kalau dinyatakan dalam derajat adalah...A. 32,26 derajatB. 37,26 derajatC. 39,26 derajatD. 30,26 derajatE. 25,78 derajat Kunci Jawaban E 47. Suatu segitiga ABC siku-siku di B, besar sudut A = 30 derajat, panjang AB = 15 cm. Panjang sisi AC adalah…A. 10 cmB. 10 cmC. 5 cmD. 15 cmE. 30 cm Kunci Jawaban C 48. Diketahui cos α derajat adalah 1/2. α sudut lancip 0 derajat < α derajat < 90 derajat. Berapa nilai perbandingan trigonometri sudut α derajat yang lain?A. cos sec α = c/a = 2/√3 = 2/3√6B. cos sec α = c/a = 2/√3 = 2/3√4C. cos sec α = c/a = 2/√3 = 2/4√3D. cos sec α = c/a = 2/√3 = 1/2√3E. cos sec α = c/a = 2/√3 = 2/3√3 Kunci Jawaban E 49. Berapa radian jarak putar jarum menit sebuah jam apabila ia berputar selama 45 menit?A. 45/720 2π=1/16πradB. 45/720 2π=1/8πradC. 45/120 2π=1/2πradD. 45/620 2π=1/3πradE. 45/420 2π=1/4πrad Kunci Jawaban B 50. Dalam sebuah segitiga KLM, diketahui k = 4 cm, l = 3 cm, dan luasnya 6 cm2. Besar sudut apit sisi k dan l adalah...A. 120 derajatB. 90 derajatC. 45 derajatD. 30 derajatE. 60 derajat Kunci Jawaban E * Disclaimer artikel ini hanya ditujukan kepada orangtua untuk memandu proses belajar anak. Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Artikel ini telah tayang di dengan judul 50 Soal PAS, UAS Matematika Kelas 10 Semester 2 K13 dan Kunci Jawaban Penilaian Akhir Tahun
MatematikaGEOMETRI Kelas 11 SMATransformasiRotasi Perputaran dengan pusat a,bDiketahui segitiga ABC dengan koordinat titik sudut A-3, 2, B2, 4, dan C-1, -1. Segitiga terhadap ABC diputar sebesar -pi titik pusat 5, 1 diperoleh bayangan segitiga ABC. Koordinat titik A', B', dan C' berturut-turut adalah . . . .Rotasi Perputaran dengan pusat a,bTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0253Titik B3,-2 dirotasikan sebesar 90 terhadap titik pusat...0155Titik B3, -2 dirotasikan sebesar 90 terhadap titik pusa...0507Segitiga ABC dengan koordinat titik sudut A2, -1, B6, ...0225Titik 2a,-a diputar 90 berlawanan arah jarum jam dengan...Teks videoada salah kali ini diketahui segitiga ABC dengan koordinat titik sudut a b c, d tanyakan bayangan bayangan segitiga a aksen B aksen C aksen atau koordinat titik a aksen B aksen C aksen berturut-turut perhatikan bentuk umumnya rotasi dengan pusat p a koma B dan sudut dan sudut putar Alfa bisa kita tulis dalam bentuk matriks X aksen y aksen = cos Alfa Sin Alfa Min Sin Alfa cos Alfa X dikurang Y dikurang B ditambah a b Diketahui segitiga abcd diputar sebesar Min phi maka disini alfanya kita ganti dengan mimpi sehingga berdasarkan bentuk umum di atas tulis X aksen X aksen aksen = cos mimpi-mimpi bensin mimpi-mimpi dikali X dikurang Y dikurang B ditambah a bIkan karena besar sudut putaran ada yang positif ada yang negatif maka berpengaruh pada nilai Sin dan cos sudut positif atau negatif sehingga cos Alfa = cos Alfa Sin Alfa = Min Sin Alfa sehingga di sini bisa kita tulis kos mimpi = cos phi Sin mimpi = Min Sin phi Sin phi = Sin P dan cos Q = cos phi Nah bisa kita tulis seperti ini. Nah langkah selanjutnya X aksen y aksen = nilai dari cos phi = min 1 nilai dari sin phi sama dengan nol nah ditulis seperti ini. Nah langkah selanjutnya bisa kita cari yang pertama untuk titik A min 3,2 dirotasikan terhadap pusat P 5,1 sebesar mimpi perhatikan x-nya min 3 Y nya 2 hanya 5 B nya 1 kita gunakan untuk diaX aksen aksen = Min 100 min 1 x di sini diganti hanya dengan 5 B nya = 1 Oke Anya 51 dilakukan perhitungan diperoleh - 100 - 1 - 3 - 5 - 82 - 1 = 1 k dilakukan perkalian matriks baris dikali kolom diperoleh 8 - 1 dilakukan penjumlahan matriks diperoleh 1300 sehingga koordinat A aksen nya 13,06 perhatikan untuk titik B 2,4 dirotasikan terhadap pusat 5,1 sebesar mimpi kita juga gunakan bentuk umum di atas sehingga di sini kita ganti X aksen aksen = minus 100 minus 1 kita ganti hanya 5 B = 1 dan a dilakukan perhitungan diperoleh Min 100 Min1 Min 33 + 51 dilakukan perkalian matriks diperoleh 3 - 3 dilakukan penjumlahan matriks diperoleh 8 - 2 masehi hingga 8 koma min dua dan selanjutnya untuk titik c titik C min 1 koma min 1 dirotasikan terhadap pusat P 5,1 sebesar mimpi naik kita juga guna bentuk umum di atas sehingga X aksen aksen = Min 100 min 1 min 1 dikurang 5 min 1 Kurang 1 + 51 dilakukan perhitungan diperoleh bentuk seperti ini dilakukan perkalian matriks ingat baris dikali kolom diperoleh 62 dilakukan dilakukan penjumlahan matriks peroleh 11/3 sehingga titik Q aksen C aksen 11,3 sehingga jawaban yang sesuai ada pada opsi pilihan E6untuk pembahasan soal kali ini sampai jumpa pada pembahasan soal berikutnya
diketahui segitiga abc dengan titik sudut a 2 7 b